User defined recursion – not limited

TO SUPPORT MY WORK, ORDER A COMMERCIAL LICENSE
THANK YOU!

Tutorial Math Collection API spec Download

Below is the code for JAVA, the code for C# is almost identical.

Case 1: Fibonacci numbers using user defined recursive function

import org.mariuszgromada.math.mxparser.*;
...
Function fib = new Function("fib(n) = if( n>1, fib(n-1)+fib(n-2), if(n>0, 1, 0) )");
Expression e = new Expression("fib(10)", fib);

mXparser.consolePrintln("Res 1: " + e.getExpressionString() + " = " + e.calculate());
mXparser.consolePrintln("Res 2: fib(11) = " + fib.calculate(11));
[mXparser-v.5.0.0] Res 1: fib(10) = 55.0
[mXparser-v.5.0.0] Res 2: fib(11) = 89.0

Case 2: Number of recursive parameters is not limited – binomial coefficient definition using user defined recursive function

import org.mariuszgromada.math.mxparser.*;
...
Function Cnk = new Function("Cnk(n,k) = if( k>0, if( k<n, Cnk(n-1,k-1)+Cnk(n-1,k), 1), 1)");
Expression e = new Expression("Cnk(10,3) - C(10,3)", Cnk);

mXparser.consolePrintln("Res 1: " + e.getExpressionString() + " = " + e.calculate());
mXparser.consolePrintln("Res 2: Cnk(10,3) = " + Cnk.calculate(10,3));
[mXparser-v.5.0.0] Res 1: Cnk(10,3) - C(10,3) = 0.0
[mXparser-v.5.0.0] Res 2: Cnk(10,3) = 120.0

Case 3: Mixing function parameters – part causing recursive calls, other part as ‘typical’ parameter. Below example is presenting definition of Chebyshev polynomial using recursive function

import org.mariuszgromada.math.mxparser.*;
...
Function T = new Function("T(n,x) = if(n>1, 2*x*T(n-1,x)-T(n-2,x), if(n>0, x, 1) )");
Argument k = new Argument("k = 5");
Argument x = new Argument("x = 2");

Expression e = new Expression("T(k,x) - ( (x + sqrt(x^2-1))^k + (x - sqrt(x^2-1))^k)/2", T, k, x);
mXparser.consolePrintln("Res : " + e.getExpressionString() + " = " + e.calculate());
[mXparser-v.5.0.0] Res : T(k,x) - ( (x + sqrt(x^2-1))^k + (x - sqrt(x^2-1))^k)/2 = 1.0E-13

Case 4: Indirect recursion – approximating sin(x) and cos(x)

import org.mariuszgromada.math.mxparser.*;
...
Constant a = new Constant("a = 0.0001");
Function s = new Function("s(x) = if( abs(x) < a, x, 2*s(x/2)*c(x/2) )", a);
Function c = new Function("c(x) = if( abs(x) < a, 1, c(x/2)^2-s(x/2)^2 )", a);
/*
 * Functions s and c must point to each other,
 * i.e. references should be added only after
 * they have been created
 */
s.addDefinitions(c);
c.addDefinitions(s);

Expression e1 = new Expression("sin(5)-s(5)", s);
Expression e2 = new Expression("cos(5)-c(5)", c);

mXparser.consolePrintln("Res 1: " + e1.getExpressionString() + " = " + e1.calculate());
mXparser.consolePrintln("Res 2: " + e2.getExpressionString() + " = " + e2.calculate());
[mXparser-v.5.0.0] Res 1: sin(5)-s(5) = 1.829204866182E-4
[mXparser-v.5.0.0] Res 2: cos(5)-c(5) = -5.410012369295E-5
Nuget
Install-Package MathParser.org-mXparser -Version 5.0.2
Maven
<dependency>
<groupid>org.mariuszgromada.math</groupid>
<artifactid>MathParser.org-mXparser</artifactid>
<version>5.0.2</version>
</dependency>
Gradle
implementation 'org.mariuszgromada.math:MathParser.org-mXparser:5.0.2'
Gradle (Kotlin)
implementation("org.mariuszgromada.math:MathParser.org-mXparser:5.0.2")
GitHub
git clone https://github.com/mariuszgromada/MathParser.org-mXparser
OTHER DOWNLOAD OPTIONS

Download latest release – v.5.0.2 Leonis: bin + docDownload latest release – v.5.0.2 Leonis: bin only, includes separate binaries for various .NET platforms and Java versions
Source code .zipSource code .tar.gz
View on GitHubMathSpace.pl

DONATION
Did you find the software useful?
Please consider donation 🙂
DONATE