TO SUPPORT MY WORK, ORDER A COMMERCIAL LICENSE
THANK YOU!
The tutorial consists of more than 200 live examples from 50 sections given separately for JAVA, C# and C++. Each of the examples can be copied and run on your own environment. In addition, mXparser provides an extensive collection of over 500 built-in math functions, expressions and symbols. Familiarize yourself with the scope and the syntax. Live testing is the best way to learn. Good luck! 🙂
Tutorial Math Collection API spec Download
Below is the code for JAVA, C# (the code for C# is almost identical) and C++. To copy the code, double-click inside the frame.
Case 1: Fibonacci numbers using user defined recursive function
Java/C# code
// JAVA: import org.mariuszgromada.math.mxparser.*;
// C#: using org.mariuszgromada.math.mxparser;
// ...
Function fib = new Function("fib(n) = if( n>1, fib(n-1)+fib(n-2), if(n>0, 1, 0) )");
Expression e = new Expression("fib(10)", fib);
mXparser.consolePrintln("Res 1: " + e.getExpressionString() + " = " + e.calculate());
mXparser.consolePrintln("Res 2: fib(11) = " + fib.calculate(11));
C++ code
#include "org/mariuszgromada/math/mxparser.hpp"
// ...
Code result
[mXparser-v.5.2.1] Res 1: fib(10) = 55.0
[mXparser-v.5.2.1] Res 2: fib(11) = 89.0
Case 2: Number of recursive parameters is not limited – binomial coefficient definition using user defined recursive function
Java/C# code
// JAVA: import org.mariuszgromada.math.mxparser.*;
// C#: using org.mariuszgromada.math.mxparser;
// ...
Function Cnk = new Function("Cnk(n,k) = if( k>0, if( k<n, Cnk(n-1,k-1)+Cnk(n-1,k), 1), 1)");
Expression e = new Expression("Cnk(10,3) - C(10,3)", Cnk);
mXparser.consolePrintln("Res 1: " + e.getExpressionString() + " = " + e.calculate());
mXparser.consolePrintln("Res 2: Cnk(10,3) = " + Cnk.calculate(10,3));
C++ code
#include "org/mariuszgromada/math/mxparser.hpp"
// ...
FunctionPtr Cnk = new_Function("Cnk(n,k) = if( k>0, if( k<n, Cnk(n-1,k-1)+Cnk(n-1,k), 1), 1)");
ExpressionPtr e = new_Expression("Cnk(10,3) - C(10,3)", Cnk);
mXparser::consolePrintln("Res 1: " + e->getExpressionString() + " = " + e->calculate());
mXparser_consolePrintln("Res 2: Cnk(10,3) = " + Cnk->calculate(10,3));
Code result
[mXparser-v.5.2.1] Res 1: Cnk(10,3) - C(10,3) = 0.0
[mXparser-v.5.2.1] Res 2: Cnk(10,3) = 120.0
Case 3: Mixing function parameters – part causing recursive calls, other part as ‘typical’ parameter. Below example is presenting definition of Chebyshev polynomial using recursive function
Java/C# code
// JAVA: import org.mariuszgromada.math.mxparser.*;
// C#: using org.mariuszgromada.math.mxparser;
// ...
Function T = new Function("T(n,x) = if(n>1, 2*x*T(n-1,x)-T(n-2,x), if(n>0, x, 1) )");
Argument k = new Argument("k = 5");
Argument x = new Argument("x = 2");
Expression e = new Expression("T(k,x) - ( (x + sqrt(x^2-1))^k + (x - sqrt(x^2-1))^k)/2", T, k, x);
mXparser.consolePrintln("Res : " + e.getExpressionString() + " = " + e.calculate());
C++ code
#include "org/mariuszgromada/math/mxparser.hpp"
// ...
FunctionPtr T = new_Function("T(n,x) = if(n>1, 2*x*T(n-1,x)-T(n-2,x), if(n>0, x, 1) )");
ArgumentPtr k = new_Argument("k = 5");
ArgumentPtr x = new_Argument("x = 2");
ExpressionPtr e = new_Expression("T(k,x) - ( (x + sqrt(x^2-1))^k + (x - sqrt(x^2-1))^k)/2", T, k, x);
mXparser::consolePrintln("Res : " + e->getExpressionString() + " = " + e->calculate());
Code result
[mXparser-v.5.2.1] Res : T(k,x) - ( (x + sqrt(x^2-1))^k + (x - sqrt(x^2-1))^k)/2 = 0.0
Case 4: Indirect recursion – approximating sin(x) and cos(x)
Java/C# code
// JAVA: import org.mariuszgromada.math.mxparser.*;
// C#: using org.mariuszgromada.math.mxparser;
// ...
Constant a = new Constant("a = 0.0001");
Function s = new Function("s(x) = if( abs(x) < a, x, 2*s(x/2)*c(x/2) )", a);
Function c = new Function("c(x) = if( abs(x) < a, 1, c(x/2)^2-s(x/2)^2 )", a);
/*
* Functions s and c must point to each other,
* i.e. references should be added only after
* they have been created
*/
s.addDefinitions(c);
c.addDefinitions(s);
Expression e1 = new Expression("sin(5)-s(5)", s);
Expression e2 = new Expression("cos(5)-c(5)", c);
mXparser.consolePrintln("Res 1: " + e1.getExpressionString() + " = " + e1.calculate());
mXparser.consolePrintln("Res 2: " + e2.getExpressionString() + " = " + e2.calculate());
C++ code
#include "org/mariuszgromada/math/mxparser.hpp"
// ...
ConstantPtr a = new_Constant("a = 0.0001");
FunctionPtr s = new_Function("s(x) = if( abs(x) < a, x, 2*s(x/2)*c(x/2) )", a);
FunctionPtr c = new_Function("c(x) = if( abs(x) < a, 1, c(x/2)^2-s(x/2)^2 )", a);
/*
* Functions s and c must point to each other,
* i.e. references should be added only after
* they have been created
*/
s->addDefinitions(c);
c->addDefinitions(s);
ExpressionPtr e1 = new_Expression("sin(5)-s(5)", s);
ExpressionPtr e2 = new_Expression("cos(5)-c(5)", c);
mXparser::consolePrintln("Res 1: " + e1->getExpressionString() + " = " + e1->calculate());
mXparser::consolePrintln("Res 2: " + e2->getExpressionString() + " = " + e2->calculate());
Code result
[mXparser-v.5.2.1] Res 1: sin(5)-s(5) = 1.829204866182E-4
[mXparser-v.5.2.1] Res 2: cos(5)-c(5) = -5.410012369295E-5
Nuget – Package Manager (C#, F#, Visual Basic, …)
Install-Package
MathParser.org-mXparser
-Version
6.1.0
dotnet add package
MathParser.org-mXparser
--version
6.1.0
<PackageReference Include=
"MathParser.org-mXparser"
Version=
"6.1.0"
/>
Maven – Dependency (Java, Kotlin, Scala, Groovy, …)
<dependency>
<groupid>org.mariuszgromada.math
</groupid>
<artifactid>MathParser.org-mXparser
</artifactid>
<version>6.1.0
</version>
</dependency>
Maven – Gradle
implementation
'org.mariuszgromada.math:MathParser.org-mXparser:6.1.0'
CMake – Dependency / FetchContent (C++, MSVC, LLVM/Clang, GNU/GCC, MinGW, MSYS2, WSL, Windows, Linux, Unix, MacOS)
include(FetchContent)
FetchContent_Declare(
MathParserOrgMxParser
GIT_REPOSITORY https://github.com/mariuszgromada/MathParser.org-mXparser.git
GIT_TAG v.6.1.0
SOURCE_SUBDIR CURRENT/cpp/lib
)
FetchContent_MakeAvailable(MathParserOrgMxParser
)
target_link_libraries(YourExecutable MathParserOrgMxParser
)
GitHub
git clone
https://github.com/mariuszgromada/MathParser.org-mXparser
OTHER DOWNLOAD OPTIONS
Download latest release – v.6.1.0 Sagitara: .NET bin onlyDownload latest release – v.6.1.0 Sagitara: JAVA bin onlyDownload latest release – v.6.1.0 Sagitara: bin + doc
NEWS FROM MATHPARSER.ORG
SOURCE CODE
Source code .zipSource code .tar.gz
View on GitHubMathSpace.pl