TO SUPPORT MY WORK, ORDER A COMMERCIAL LICENSE
THANK YOU!
mXparser provides a rich collection of built-in math functions, math expressions, and math symbols. Familiarize yourself with the scope and the syntax. Math collection internal help is also available directly from the software – see the tutorial and the API documentation for all the details.
Tutorial Math Collection API spec Download
mXparser – built-in Binary Functions
Key word | Category | Description | Example | Since |
log | Binary Function | Logarithm function | log(a, b) | 1.0 |
mod | Binary Function | Modulo function | mod(a, b) | 1.0 |
C | Binary Function | Binomial coefficient function, number of k-combinations that can be drawn from n-elements set | C(n, k) | 1.0 |
nCk | Binary Function | Binomial coefficient function, number of k-combinations that can be drawn from n-elements set | nCk(n, k) | 4.2 |
Bern | Binary Function | Bernoulli numbers | Bern(m, n) | 1.0 |
Stirl1 | Binary Function | Stirling numbers of the first kind | Stirl1(n, k) | 1.0 |
Stirl2 | Binary Function | Stirling numbers of the second kind | Stirl2(n, k) | 1.0 |
Worp | Binary Function | Worpitzky number | Worp(n, k) | 1.0 |
Euler | Binary Function | Euler number | Euler(n, k) | 1.0 |
KDelta | Binary Function | Kronecker delta | KDelta(i, j) | 1.0 |
EulerPol | Binary Function | EulerPol | EulerPol(m, x) | 1.0 |
Harm | Binary Function | Harmonic number | Harm(x, n) | 1.0 |
rUni | Binary Function | Random variable – Uniform continuous distribution U(a,b), usage example: 2*rUni(2,10) | rUni(a, b) | 3.0 |
rUnid | Binary Function | Random variable – Uniform discrete distribution U{a,b}, usage example: 2*rUnid(2,100) | rUnid(a, b) | 3.0 |
round | Binary Function | Half-up rounding, usage examples: round(2.2, 0) = 2, round(2.6, 0) = 3, round(2.66,1) = 2.7 | round(x, n) | 3.0 |
rNor | Binary Function | Random variable – Normal distribution N(m,s) m – mean, s – stddev, usage example: 3*rNor(0,1) | rNor(mean, stdv) | 3.0 |
ndig | Binary Function | Number of digits representing the number in numeral system with given base | ndig(number, base) | 4.1 |
dig10 | Binary Function | Digit at position 1 … n (left -> right) or 0 … -(n-1) (right -> left) – base 10 numeral system | dig10(num, pos) | 4.1 |
factval | Binary Function | Prime decomposition – factor value at position between 1 … nfact(n) – ascending order by factor value | factval(number, factorid) | 4.1 |
factexp | Binary Function | Prime decomposition – factor exponent / multiplicity at position between 1 … nfact(n) – ascending order by factor value | factexp(number, factorid) | 4.1 |
root | Binary Function | N-th order root of a number | root(rootorder, number) | 4.1 |
GammaL | Binary Function | Lower incomplete gamma special function, γ(s,x) | GammaL(s, x) | 4.2 |
GammaU | Binary Function | Upper incomplete Gamma special function, Γ(s,x) | GammaU(s, x) | 4.2 |
GammaP | Binary Function | Lower regularized P gamma special function, P(s,x) | GammaP(s, x) | 4.2 |
GammaRegL | Binary Function | Lower regularized P gamma special function, P(s,x) | GammaRegL(s, x) | 4.2 |
GammaQ | Binary Function | Upper regularized Q Gamma special function, Q(s,x) | GammaQ(s, x) | 4.2 |
GammaRegU | Binary Function | Upper regularized Q Gamma special function, Q(s,x) | GammaRegU(s, x) | 4.2 |
nPk | Binary Function | Number of k-permutations that can be drawn from n-elements set | nPk(n, k) | 4.2 |
Beta | Binary Function | The Beta special function B(x,y), also called the Euler integral of the first kind | Beta(x, y) | 4.2 |
logBeta | Binary Function | The Log Beta special function ln B(x,y), also called the Log Euler integral of the first kind, ln B(x,y) | logBeta(x, y) | 4.2 |
pStud | Binary Function | Probability distribution function – Student’s t-distribution | pStud(x, v) | 5.0 |
cStud | Binary Function | Cumulative distribution function – Student’s t-distribution | cStud(x, v) | 5.0 |
qStud | Binary Function | Quantile function (inverse cumulative distribution function) – Student’s t-distribution | qStud(p, v) | 5.0 |
pChi2 | Binary Function | Probability distribution function – Chi-squared distribution | pChi2(x, k) | 5.0 |
cChi2 | Binary Function | Cumulative distribution function – Chi-squared distribution | cChi2(x, k) | 5.0 |
qChi2 | Binary Function | Quantile function (inverse cumulative distribution function) – Chi-squared distribution | qChi2(p, k) | 5.0 |
Nuget – Package Manager
Install-Package
MathParser.org-mXparser
-Version
5.0.6
dotnet add package
MathParser.org-mXparser
--version
5.0.6
<PackageReference Include=
"MathParser.org-mXparser"
Version=
"5.0.6"
/>
Maven – Dependency
<dependency>
<groupid>org.mariuszgromada.math
</groupid>
<artifactid>MathParser.org-mXparser
</artifactid>
<version>5.0.6
</version>
</dependency>
Maven – Gradle
implementation
'org.mariuszgromada.math:MathParser.org-mXparser:5.0.6'
Maven – Gradle (Kotlin)
implementation(
"org.mariuszgromada.math:MathParser.org-mXparser:5.0.6"
)
GitHub
git clone
https://github.com/mariuszgromada/MathParser.org-mXparser
OTHER DOWNLOAD OPTIONS
Download latest release – v.5.0.6 Leonis: .NET bin onlyDownload latest release – v.5.0.6 Leonis: JAVA bin onlyDownload latest release – v.5.0.6 Leonis: bin + doc
NEWS FROM MATHPARSER.ORG
SOURCE CODE
Source code .zipSource code .tar.gz
View on GitHubMathSpace.pl