Binary Functions

TO SUPPORT MY WORK, ORDER A COMMERCIAL LICENSE
THANK YOU!

mXparser provides a rich collection of built-in math functions, math expressions, and math symbols. Familiarize yourself with the scope and the syntax. Math collection internal help is also available directly from the software – see the tutorial and the API documentation for all the details.

Tutorial Math Collection API spec Download

mXparser – built-in Binary Functions

Key wordCategoryDescriptionExampleSince
logBinary FunctionLogarithm functionlog(a, b)1.0
modBinary FunctionModulo functionmod(a, b)1.0
CBinary FunctionBinomial coefficient function, number of k-combinations that can be drawn from n-elements setC(n, k)1.0
nCkBinary FunctionBinomial coefficient function, number of k-combinations that can be drawn from n-elements setnCk(n, k)4.2
BernBinary FunctionBernoulli numbersBern(m, n)1.0
Stirl1Binary FunctionStirling numbers of the first kindStirl1(n, k)1.0
Stirl2Binary FunctionStirling numbers of the second kindStirl2(n, k)1.0
WorpBinary FunctionWorpitzky numberWorp(n, k)1.0
EulerBinary FunctionEuler numberEuler(n, k)1.0
KDeltaBinary FunctionKronecker deltaKDelta(i, j)1.0
EulerPolBinary FunctionEulerPolEulerPol(m, x)1.0
HarmBinary FunctionHarmonic numberHarm(x, n)1.0
rUniBinary FunctionRandom variable – Uniform continuous distribution U(a,b), usage example: 2*rUni(2,10)rUni(a, b)3.0
rUnidBinary FunctionRandom variable – Uniform discrete distribution U{a,b}, usage example: 2*rUnid(2,100)rUnid(a, b)3.0
roundBinary FunctionHalf-up rounding, usage examples: round(2.2, 0) = 2, round(2.6, 0) = 3, round(2.66,1) = 2.7round(x, n)3.0
rNorBinary FunctionRandom variable – Normal distribution N(m,s) m – mean, s – stddev, usage example: 3*rNor(0,1)rNor(mean, stdv)3.0
ndigBinary FunctionNumber of digits representing the number in numeral system with given basendig(number, base)4.1
dig10Binary FunctionDigit at position 1 … n (left -> right) or 0 … -(n-1) (right -> left) – base 10 numeral systemdig10(num, pos)4.1
factvalBinary FunctionPrime decomposition – factor value at position between 1 … nfact(n) – ascending order by factor valuefactval(number, factorid)4.1
factexpBinary FunctionPrime decomposition – factor exponent / multiplicity at position between 1 … nfact(n) – ascending order by factor valuefactexp(number, factorid)4.1
rootBinary FunctionN-th order root of a numberroot(rootorder, number)4.1
GammaLBinary FunctionLower incomplete gamma special function, γ(s,x)GammaL(s, x)4.2
GammaUBinary FunctionUpper incomplete Gamma special function, Γ(s,x)GammaU(s, x)4.2
GammaPBinary FunctionLower regularized P gamma special function, P(s,x)GammaP(s, x)4.2
GammaRegLBinary FunctionLower regularized P gamma special function, P(s,x)GammaRegL(s, x)4.2
GammaQBinary FunctionUpper regularized Q Gamma special function, Q(s,x)GammaQ(s, x)4.2
GammaRegUBinary FunctionUpper regularized Q Gamma special function, Q(s,x)GammaRegU(s, x)4.2
nPkBinary FunctionNumber of k-permutations that can be drawn from n-elements setnPk(n, k)4.2
BetaBinary FunctionThe Beta special function B(x,y), also called the Euler integral of the first kindBeta(x, y)4.2
logBetaBinary FunctionThe Log Beta special function ln B(x,y), also called the Log Euler integral of the first kind, ln B(x,y)logBeta(x, y)4.2
pStudBinary FunctionProbability distribution function – Student’s t-distributionpStud(x, v)5.0
cStudBinary FunctionCumulative distribution function – Student’s t-distributioncStud(x, v)5.0
qStudBinary FunctionQuantile function (inverse cumulative distribution function) – Student’s t-distributionqStud(p, v)5.0
pChi2Binary FunctionProbability distribution function – Chi-squared distributionpChi2(x, k)5.0
cChi2Binary FunctionCumulative distribution function – Chi-squared distributioncChi2(x, k)5.0
qChi2Binary FunctionQuantile function (inverse cumulative distribution function) – Chi-squared distributionqChi2(p, k)5.0
rFSnedBinary FunctionRandom variable – Snedecor’s F distribution (F-distribution or F-ratio, also known as Fisher–Snedecor distribution)rFSned(d1, d2)5.1
as of 2022-11-13
Nuget – Package Manager

Install-Package MathParser.org-mXparser -Version 5.1.0

Nuget – .NET CLI

dotnet add package MathParser.org-mXparser --version 5.1.0

Nuget – Package Reference

<PackageReference Include="MathParser.org-mXparser" Version="5.1.0"/>

Maven – Dependency

<dependency>
<groupid>
org.mariuszgromada.math</groupid>
<artifactid>
MathParser.org-mXparser</artifactid>
<version>
5.1.0</version>
</dependency>

Maven – Gradle

implementation 'org.mariuszgromada.math:MathParser.org-mXparser:5.1.0'

Maven – Gradle (Kotlin)

implementation("org.mariuszgromada.math:MathParser.org-mXparser:5.1.0")

GitHub

git clone https://github.com/mariuszgromada/MathParser.org-mXparser

OTHER DOWNLOAD OPTIONS

Download latest release – v.5.1.0 Libris: .NET bin onlyDownload latest release – v.5.1.0 Libris: JAVA bin onlyDownload latest release – v.5.1.0 Libris: bin + doc

NEWS FROM MATHPARSER.ORG
SOURCE CODE

Source code .zipSource code .tar.gz
View on GitHubMathSpace.pl

DONATION
Did you find the software useful?
Please consider donation 🙂
DONATE