TO SUPPORT MY WORK, ORDER A COMMERCIAL LICENSE
THANK YOU!
Tutorial Math Collection API spec Download
Below is the code for JAVA, the code for C# is almost identical.
Case 1: Primality test / Prime test function
$$\text{IsPrime}(n)$$
import org.mariuszgromada.math.mxparser.*; ... /* Primality test function used in expression. */ Expression e1 = new Expression("ispr(5)"); Expression e2 = new Expression("ispr(9)"); /* Calculation and result output */ mXparser.consolePrintln("Res 1: " + e1.getExpressionString() + " = " + e1.calculate()); mXparser.consolePrintln("Res 2: " + e2.getExpressionString() + " = " + e2.calculate());
[mXparser-v.5.0.0] Res 1: ispr(5) = 1.0 [mXparser-v.5.0.0] Res 2: ispr(9) = 0.0
Case 2: Primes counting function
$$\pi(n)$$
import org.mariuszgromada.math.mxparser.*; ... /* Prime counting function used in expression. */ Expression e = new Expression("Pi(10000000)"); /* Calculation and result output */ mXparser.consolePrintln("Res : " + e.getExpressionString() + " = " + e.calculate()); mXparser.consolePrintln("Time: " + e.getComputingTime() + " s.");
[mXparser-v.5.0.0] Res : Pi(10000000) = 664579.0 [mXparser-v.5.0.0] Time: 10.172 s.
Case 3: Using built-in primes cache to accelerate calculations
$$\pi(n)$$
import org.mariuszgromada.math.mxparser.*; ... /* Primes cache initialization */ mXparser.initPrimesCache(10000000); mXparser.consolePrintln("Primes cache init time: " + mXparser.primesCache.getComputingTime()); /* Prime counting function used in expression. */ Expression e = new Expression("Pi(10000000)"); /* Calculation and result output */ mXparser.consolePrintln("Res : " + e.getExpressionString() + " = " + e.calculate()); mXparser.consolePrintln("Time: " + e.getComputingTime() + " s.");
[mXparser-v.5.0.0] Primes cache init time: 0.093 [mXparser-v.5.0.0] Res : Pi(10000000) = 664579.0 [mXparser-v.5.0.0] Time: 0.109 s.
Case 4: (Using case 3) Estimating number of primes using Offset logarithmic integral function
$$\frac{\pi(n)}{\text{Li}(x)}$$
import org.mariuszgromada.math.mxparser.*; ... /* Primes cache was initialized in the previous example * and it will be used in the following calculations. * * We are going to estimate the number of primes Pi(n) * using offset logarithmic integral function Li(n) */ Expression e = new Expression("Pi(10000000) / Li(10000000)"); /* Calculation and result output */ mXparser.consolePrintln("Res : " + e.getExpressionString() + " = " + e.calculate());
[mXparser-v.5.0.0] Res : Pi(10000000) / Li(10000000) = 0.9994911249048335
Case 5: Prime factorization
import org.mariuszgromada.math.mxparser.*; ... Argument x = new Argument("x = 12345"); Expression e = new Expression("sgn(x) * prod(i, 1, nfact(x), factval(x, i)^factexp(x, i) )", x); mXparser.consolePrintln("Res 1: " + e.getExpressionString() + " = " + e.calculate());
[mXparser-v.5.0.0] Res 1: sgn(x) * prod(i, 1, nfact(x), factval(x, i)^factexp(x, i) ) = 12345.0
Nuget
Install-Package MathParser.org-mXparser -Version 5.0.2
Maven
<dependency>
<groupid>org.mariuszgromada.math</groupid>
<artifactid>MathParser.org-mXparser</artifactid>
<version>5.0.2</version>
</dependency>
Gradle
implementation 'org.mariuszgromada.math:MathParser.org-mXparser:5.0.2'
Gradle (Kotlin)
implementation("org.mariuszgromada.math:MathParser.org-mXparser:5.0.2")
GitHub
git clone https://github.com/mariuszgromada/MathParser.org-mXparser
OTHER DOWNLOAD OPTIONS
Download latest release – v.5.0.2 Leonis: bin + docDownload latest release – v.5.0.2 Leonis: bin only, includes separate binaries for various .NET platforms and Java versions
NEWS FROM MATHPARSER.ORG
SOURCE CODE
Source code .zipSource code .tar.gz
View on GitHubMathSpace.pl