Prime Numbers

TO SUPPORT MY WORK, ORDER A COMMERCIAL LICENSE
THANK YOU!

Tutorial Math Collection API spec Download

Below is the code for JAVA, the code for C# is almost identical.

Case 1: Primality test / Prime test function

$$\text{IsPrime}(n)$$

import org.mariuszgromada.math.mxparser.*;
...
/* Primality test function used in expression. */
Expression e1 = new Expression("ispr(5)");
Expression e2 = new Expression("ispr(9)");

/* Calculation and result output */
mXparser.consolePrintln("Res 1: " + e1.getExpressionString() + " = " + e1.calculate());
mXparser.consolePrintln("Res 2: " + e2.getExpressionString() + " = " + e2.calculate());
[mXparser-v.5.0.0] Res 1: ispr(5) = 1.0
[mXparser-v.5.0.0] Res 2: ispr(9) = 0.0

Case 2: Primes counting function

$$\pi(n)$$

import org.mariuszgromada.math.mxparser.*;
...
/* Prime counting function used in expression. */
Expression e = new Expression("Pi(10000000)");

/* Calculation and result output */
mXparser.consolePrintln("Res : " + e.getExpressionString() + " = " + e.calculate());
mXparser.consolePrintln("Time: " + e.getComputingTime() + " s.");
[mXparser-v.5.0.0] Res : Pi(10000000) = 664579.0
[mXparser-v.5.0.0] Time: 10.172 s.

Case 3: Using built-in primes cache to accelerate calculations

$$\pi(n)$$

import org.mariuszgromada.math.mxparser.*;
...
/* Primes cache initialization */
mXparser.initPrimesCache(10000000);
mXparser.consolePrintln("Primes cache init time: " + mXparser.primesCache.getComputingTime());

/* Prime counting function used in expression. */
Expression e = new Expression("Pi(10000000)");

/* Calculation and result output */
mXparser.consolePrintln("Res : " + e.getExpressionString() + " = " + e.calculate());
mXparser.consolePrintln("Time: " + e.getComputingTime() + " s.");
[mXparser-v.5.0.0] Primes cache init time: 0.093
[mXparser-v.5.0.0] Res : Pi(10000000) = 664579.0
[mXparser-v.5.0.0] Time: 0.109 s.

Case 4: (Using case 3) Estimating number of primes using Offset logarithmic integral function

$$\frac{\pi(n)}{\text{Li}(x)}$$

import org.mariuszgromada.math.mxparser.*;
...
/* Primes cache was initialized in the previous example
 * and it will be used in the following calculations.
 *
 * We are going to estimate the number of primes Pi(n)
 * using offset logarithmic integral function Li(n)
 */
Expression e = new Expression("Pi(10000000) / Li(10000000)");

/* Calculation and result output */
mXparser.consolePrintln("Res : " + e.getExpressionString() + " = " + e.calculate());
[mXparser-v.5.0.0] Res : Pi(10000000) / Li(10000000) = 0.9994911249048335

Case 5: Prime factorization

import org.mariuszgromada.math.mxparser.*;
...
Argument x = new Argument("x = 12345");
Expression e = new Expression("sgn(x) * prod(i, 1, nfact(x), factval(x, i)^factexp(x, i) )", x);
mXparser.consolePrintln("Res 1: " + e.getExpressionString() + " = " + e.calculate());
[mXparser-v.5.0.0] Res 1: sgn(x) * prod(i, 1, nfact(x), factval(x, i)^factexp(x, i) ) = 12345.0
Nuget
Install-Package MathParser.org-mXparser -Version 5.0.2
Maven
<dependency>
<groupid>org.mariuszgromada.math</groupid>
<artifactid>MathParser.org-mXparser</artifactid>
<version>5.0.2</version>
</dependency>
Gradle
implementation 'org.mariuszgromada.math:MathParser.org-mXparser:5.0.2'
Gradle (Kotlin)
implementation("org.mariuszgromada.math:MathParser.org-mXparser:5.0.2")
GitHub
git clone https://github.com/mariuszgromada/MathParser.org-mXparser
OTHER DOWNLOAD OPTIONS

Download latest release – v.5.0.2 Leonis: bin + docDownload latest release – v.5.0.2 Leonis: bin only, includes separate binaries for various .NET platforms and Java versions

NEWS FROM MATHPARSER.ORG
SOURCE CODE

Source code .zipSource code .tar.gz
View on GitHubMathSpace.pl

DONATION
Did you find the software useful?
Please consider donation 🙂
DONATE