TO SUPPORT MY WORK, ORDER A COMMERCIAL LICENSE
THANK YOU!
The tutorial consists of more than 200 live examples from 50 sections given separately for JAVA, C# and C++. Each of the examples can be copied and run on your own environment. In addition, mXparser provides an extensive collection of over 500 built-in math functions, expressions and symbols. Familiarize yourself with the scope and the syntax. Live testing is the best way to learn. Good luck! 🙂
Tutorial Math Collection API spec Download
Below is the code for JAVA, C# (the code for C# is almost identical) and C++. To copy the code, double-click inside the frame.
Case 1: SIGMA summation operator
$$\sum_{i=k}^{n}f(x_1,x_2,,\ldots,i)$$
Java/C# code
// JAVA: import org.mariuszgromada.math.mxparser.*;
// C#: using org.mariuszgromada.math.mxparser;
// ...
Expression e1 = new Expression("sum(i, 1, 10, 2*i)");
mXparser.consolePrintln("Res 1: " + e1.getExpressionString() + " = " + e1.calculate());
/* Iteration can be done by not necessarily whole increment */
Expression e2 = new Expression("sum(i, 1, 10, i, 0.5)");
mXparser.consolePrintln("Res 2: " + e2.getExpressionString() + " = " + e2.calculate());
C++ code
#include "org/mariuszgromada/math/mxparser.hpp"
// ...
ExpressionPtr e1 = new_Expression("sum(i, 1, 10, 2*i)");
mXparser::consolePrintln("Res 1: " + e1->getExpressionString() + " = " + e1->calculate());
/* Iteration can be done by not necessarily whole increment */
ExpressionPtr e2 = new_Expression("sum(i, 1, 10, i, 0.5)");
mXparser::consolePrintln("Res 2: " + e2->getExpressionString() + " = " + e2->calculate());
Code result
[mXparser-v.5.2.1] Res 1: sum(i, 1, 10, 2*i) = 110.0
[mXparser-v.5.2.1] Res 2: sum(i, 1, 10, i, 0.5) = 104.5
Case 2: PI product operator
$$\prod_{i=k}^{n}f(x_1,x_2,,\ldots,i)$$
Java/C# code
// JAVA: import org.mariuszgromada.math.mxparser.*;
// C#: using org.mariuszgromada.math.mxparser;
// ...
/* factorial */
Expression e1 = new Expression("prod(i, 1, 5, i)");
mXparser.consolePrintln("Res 1: " + e1.getExpressionString() + " = " + e1.calculate());
/* Iteration can be done by not necessarily whole increment */
/* Here different form of 10! */
Expression e2 = new Expression("prod(i, 1, 5, 2*i, 0.5)");
mXparser.consolePrintln("Res 2: " + e2.getExpressionString() + " = " + e2.calculate());
C++ code
#include "org/mariuszgromada/math/mxparser.hpp"
// ...
/* factorial */
ExpressionPtr e1 = new_Expression("prod(i, 1, 5, i)");
mXparser::consolePrintln("Res 1: " + e1->getExpressionString() + " = " + e1->calculate());
/* Iteration can be done by not necessarily whole increment */
/* Here different form of 10! */
ExpressionPtr e2 = new_Expression("prod(i, 1, 5, 2*i, 0.5)");
mXparser::consolePrintln("Res 2: " + e2->getExpressionString() + " = " + e2->calculate());
Code result
[mXparser-v.5.2.1] Res 1: prod(i, 1, 5, i) = 120.0
[mXparser-v.5.2.1] Res 2: prod(i, 1, 5, 2*i, 0.5) = 3628800.0
Case 3: SIGMA summation operator – Approximating sin(x) by Taylor series
Java/C# code
// JAVA: import org.mariuszgromada.math.mxparser.*;
// C#: using org.mariuszgromada.math.mxparser;
// ...
Argument x = new Argument("x = 2*pi");
Argument n = new Argument("n = 3");
Expression e = new Expression("sin(x) - sum(k, 0, n, (-1)^k*(x^(2*k+1))/(2*k+1)! )", x, n);
mXparser.consolePrintln("Res 1: " + e.getExpressionString() + " = " + e.calculate());
/* Increasing polynomial order ... */
n.setArgumentValue(5);
mXparser.consolePrintln("Res 2: " + e.getExpressionString() + " = " + e.calculate());
/* Increasing polynomial order ... */
n.setArgumentValue(10);
mXparser.consolePrintln("Res 3: " + e.getExpressionString() + " = " + e.calculate());
/* Increasing polynomial order ... */
n.setArgumentValue(20);
mXparser.consolePrintln("Res 4: " + e.getExpressionString() + " = " + e.calculate());
/* Checking other point closer to '0' */
x.setArgumentValue(2);
mXparser.consolePrintln("Res 5: " + e.getExpressionString() + " = " + e.calculate());
C++ code
#include "org/mariuszgromada/math/mxparser.hpp"
// ...
ArgumentPtr x = new_Argument("x = 2*pi");
ArgumentPtr n = new_Argument("n = 3");
ExpressionPtr e = new_Expression("sin(x) - sum(k, 0, n, (-1)^k*(x^(2*k+1))/(2*k+1)! )", x, n);
mXparser::consolePrintln("Res 1: " + e->getExpressionString() + " = " + e->calculate());
/* Increasing polynomial order ... */
n->setArgumentValue(5);
mXparser::consolePrintln("Res 2: " + e->getExpressionString() + " = " + e->calculate());
/* Increasing polynomial order ... */
n->setArgumentValue(10);
mXparser::consolePrintln("Res 3: " + e->getExpressionString() + " = " + e->calculate());
/* Increasing polynomial order ... */
n->setArgumentValue(20);
mXparser::consolePrintln("Res 4: " + e->getExpressionString() + " = " + e->calculate());
/* Checking other point closer to '0' */
x->setArgumentValue(2);
mXparser::consolePrintln("Res 5: " + e->getExpressionString() + " = " + e->calculate());
Code result
[mXparser-v.5.2.1] Res 1: sin(x) - sum(k, 0, n, (-1)^k*(x^(2*k+1))/(2*k+1)! ) = 30.159127410206484
[mXparser-v.5.2.1] Res 2: sin(x) - sum(k, 0, n, (-1)^k*(x^(2*k+1))/(2*k+1)! ) = 3.195076042131831
[mXparser-v.5.2.1] Res 3: sin(x) - sum(k, 0, n, (-1)^k*(x^(2*k+1))/(2*k+1)! ) = -8.27409522186923E-5
[mXparser-v.5.2.1] Res 4: sin(x) - sum(k, 0, n, (-1)^k*(x^(2*k+1))/(2*k+1)! ) = 0.0
[mXparser-v.5.2.1] Res 5: sin(x) - sum(k, 0, n, (-1)^k*(x^(2*k+1))/(2*k+1)! ) = 0.0
Case 4: SIGMA summation operator – Approximating pi value by integrating sqrt(1-x^2)
Java/C# code
// JAVA: import org.mariuszgromada.math.mxparser.*;
// C#: using org.mariuszgromada.math.mxparser;
// ...
Argument d = new Argument("d",0.1);
Expression e = new Expression("2 * sum(x, -1, 1, d*sqrt(1-x^2), d)", d);
mXparser.consolePrintln("Res 1: d = " + d.getArgumentValue() + ", " + e.getExpressionString() + " = " + e.calculate());
d.setArgumentValue(0.01);
mXparser.consolePrintln("Res 2: d = " + d.getArgumentValue() + ", " + e.getExpressionString() + " = " + e.calculate());
C++ code
#include "org/mariuszgromada/math/mxparser.hpp"
// ...
ArgumentPtr d = new_Argument("d",0.1);
ExpressionPtr e = new_Expression("2 * sum(x, -1, 1, d*sqrt(1-x^2), d)", d);
mXparser_consolePrintln("Res 1: d = " + d->getArgumentValue() + ", " + e->getExpressionString() + " = " + e->calculate());
d->setArgumentValue(0.01);
mXparser_consolePrintln("Res 2: d = " + d->getArgumentValue() + ", " + e->getExpressionString() + " = " + e->calculate());
Code result
[mXparser-v.5.2.1] Res 1: d = 0.1, 2 * sum(x, -1, 1, d*sqrt(1-x^2), d) = 3.1045183304630037
[mXparser-v.5.2.1] Res 2: d = 0.01, 2 * sum(x, -1, 1, d*sqrt(1-x^2), d) = 3.1404170317790436
Nuget – Package Manager (C#, F#, Visual Basic, …)
Install-Package
MathParser.org-mXparser
-Version
6.1.0
dotnet add package
MathParser.org-mXparser
--version
6.1.0
<PackageReference Include=
"MathParser.org-mXparser"
Version=
"6.1.0"
/>
Maven – Dependency (Java, Kotlin, Scala, Groovy, …)
<dependency>
<groupid>org.mariuszgromada.math
</groupid>
<artifactid>MathParser.org-mXparser
</artifactid>
<version>6.1.0
</version>
</dependency>
Maven – Gradle
implementation
'org.mariuszgromada.math:MathParser.org-mXparser:6.1.0'
CMake – Dependency / FetchContent (C++, MSVC, LLVM/Clang, GNU/GCC, MinGW, MSYS2, WSL, Windows, Linux, Unix, MacOS)
include(FetchContent)
FetchContent_Declare(
MathParserOrgMxParser
GIT_REPOSITORY https://github.com/mariuszgromada/MathParser.org-mXparser.git
GIT_TAG v.6.1.0
SOURCE_SUBDIR CURRENT/cpp/lib
)
FetchContent_MakeAvailable(MathParserOrgMxParser
)
target_link_libraries(YourExecutable MathParserOrgMxParser
)
GitHub
git clone
https://github.com/mariuszgromada/MathParser.org-mXparser
OTHER DOWNLOAD OPTIONS
Download latest release – v.6.1.0 Sagitara: .NET bin onlyDownload latest release – v.6.1.0 Sagitara: JAVA bin onlyDownload latest release – v.6.1.0 Sagitara: bin + doc
NEWS FROM MATHPARSER.ORG
SOURCE CODE
Source code .zipSource code .tar.gz
View on GitHubMathSpace.pl