TO SUPPORT MY WORK, ORDER A COMMERCIAL LICENSE
THANK YOU!
Tutorial Math Collection API spec Download
Below is the code for JAVA, the code for C# is almost identical.
Case 1: SIGMA summation operator
$$\sum_{i=k}^{n}f(x_1,x_2,,\ldots,i)$$
import org.mariuszgromada.math.mxparser.*; ... Expression e1 = new Expression("sum(i, 1, 10, 2*i)"); mXparser.consolePrintln("Res 1: " + e1.getExpressionString() + " = " + e1.calculate()); /* Iteration can be done by not necessarily whole increment */ Expression e2= new Expression("sum(i, 1, 10, i, 0.5)"); mXparser.consolePrintln("Res 2: " + e2.getExpressionString() + " = " + e2.calculate());
[mXparser-v.5.0.0] Res 1: sum(i, 1, 10, 2*i) = 110.0 [mXparser-v.5.0.0] Res 2: sum(i, 1, 10, i, 0.5) = 104.5
Case 2: PI product operator
$$\prod_{i=k}^{n}f(x_1,x_2,,\ldots,i)$$
import org.mariuszgromada.math.mxparser.*; ... /* factorial */ Expression e1 = new Expression("prod(i, 1, 5, i)"); mXparser.consolePrintln("Res 1: " + e1.getExpressionString() + " = " + e1.calculate()); /* Iteration can be done by not necessarily whole increment */ /* Here different form of 10! */ Expression e2 = new Expression("prod(i, 1, 5, 2*i, 0.5)"); mXparser.consolePrintln("Res 2: " + e2.getExpressionString() + " = " + e2.calculate());
[mXparser-v.5.0.0] Res 1: prod(i, 1, 5, i) = 120.0 [mXparser-v.5.0.0] Res 2: prod(i, 1, 5, 2*i, 0.5) = 3628800.0
Case 3: SIGMA summation operator – Approximating sin(x) by Taylor series
import org.mariuszgromada.math.mxparser.*; ... Argument x = new Argument("x = 2*pi"); Argument n = new Argument("n = 3"); Expression e = new Expression("sin(x) - sum(k, 0, n, (-1)^k*(x^(2*k+1))/(2*k+1)! )", x, n); mXparser.consolePrintln("Res 1: " + e.getExpressionString() + " = " + e.calculate()); /* Increasing polynomial order ... */ n.setArgumentValue(5); mXparser.consolePrintln("Res 2: " + e.getExpressionString() + " = " + e.calculate()); /* Increasing polynomial order ... */ n.setArgumentValue(10); mXparser.consolePrintln("Res 3: " + e.getExpressionString() + " = " + e.calculate()); /* Increasing polynomial order ... */ n.setArgumentValue(20); mXparser.consolePrintln("Res 4: " + e.getExpressionString() + " = " + e.calculate()); /* Checking other point closer to '0' */ x.setArgumentValue(2); mXparser.consolePrintln("Res 5: " + e.getExpressionString() + " = " + e.calculate());
[mXparser-v.5.0.0] Res 1: sin(x) - sum(k, 0, n, (-1)^k*(x^(2*k+1))/(2*k+1)! ) = 30.159127410206484 [mXparser-v.5.0.0] Res 2: sin(x) - sum(k, 0, n, (-1)^k*(x^(2*k+1))/(2*k+1)! ) = 3.195076042131831 [mXparser-v.5.0.0] Res 3: sin(x) - sum(k, 0, n, (-1)^k*(x^(2*k+1))/(2*k+1)! ) = -8.27409522186923E-5 [mXparser-v.5.0.0] Res 4: sin(x) - sum(k, 0, n, (-1)^k*(x^(2*k+1))/(2*k+1)! ) = 0.0 [mXparser-v.5.0.0] Res 5: sin(x) - sum(k, 0, n, (-1)^k*(x^(2*k+1))/(2*k+1)! ) = 0.0
Case 4: SIGMA summation operator – Approximating pi value by integrating sqrt(1-x^2)
import org.mariuszgromada.math.mxparser.*; ... Argument d = new Argument("d",0.1); Expression e = new Expression("2 * sum(x, -1, 1, d*sqrt(1-x^2), d)", d); mXparser.consolePrintln("Res 1: d = " + d.getArgumentValue() + ", " + e.getExpressionString() + " = " + e.calculate()); d.setArgumentValue(0.01); mXparser.consolePrintln("Res 2: d = " + d.getArgumentValue() + ", " + e.getExpressionString() + " = " + e.calculate());
[mXparser-v.5.0.0] Res 1: d = 0.1, 2 * sum(x, -1, 1, d*sqrt(1-x^2), d) = 3.1045183304630037 [mXparser-v.5.0.0] Res 2: d = 0.01, 2 * sum(x, -1, 1, d*sqrt(1-x^2), d) = 3.1404170317790436
Nuget
Install-Package MathParser.org-mXparser -Version 5.0.2
Maven
<dependency>
<groupid>org.mariuszgromada.math</groupid>
<artifactid>MathParser.org-mXparser</artifactid>
<version>5.0.2</version>
</dependency>
Gradle
implementation 'org.mariuszgromada.math:MathParser.org-mXparser:5.0.2'
Gradle (Kotlin)
implementation("org.mariuszgromada.math:MathParser.org-mXparser:5.0.2")
GitHub
git clone https://github.com/mariuszgromada/MathParser.org-mXparser
OTHER DOWNLOAD OPTIONS
Download latest release – v.5.0.2 Leonis: bin + docDownload latest release – v.5.0.2 Leonis: bin only, includes separate binaries for various .NET platforms and Java versions
NEWS FROM MATHPARSER.ORG
SOURCE CODE
Source code .zipSource code .tar.gz
View on GitHubMathSpace.pl