Derivatives & Integrals

TO SUPPORT MY WORK, ORDER A COMMERCIAL LICENSE
THANK YOU!

The tutorial consists of more than 180 live examples from 40 sections. Each of the examples can be copied and run on your own environment. In addition, mXparser provides an extensive collection of over 500 built-in math functions, expressions and symbols. Familiarize yourself with the scope and the syntax. Live testing is the best way to learn. Good luck! 🙂

Tutorial Math Collection API spec Download

Below is the code for JAVA, the code for C# is almost identical.

Case 1: General derivative – at given point

import org.mariuszgromada.math.mxparser.*;
...
Expression e = new Expression("cos(1) - der(sin(x), x, 1)");
mXparser.consolePrintln("Res: " + e.getExpressionString() + " = " + e.calculate());
[mXparser-v.5.0.0] Res: cos(1) - der(sin(x), x, 1) = 8.588628E-10

Case 2: General derivative – point given by argument value

import org.mariuszgromada.math.mxparser.*;
...
Argument x = new Argument("x = 1");
Expression e = new Expression("cos(x) - der(sin(x), x)", x);
mXparser.consolePrintln("Res: " + e.getExpressionString() + " = " + e.calculate());
[mXparser-v.5.0.0] Res: cos(x) - der(sin(x), x) = 8.588628E-10

Case 3: Left / right derivative – at given point

import org.mariuszgromada.math.mxparser.*;
...
Expression e1 = new Expression("der-(abs(x), x, 0)");
Expression e2 = new Expression("der+(abs(x), x, 0)");

mXparser.consolePrintln("Res 1: " + e1.getExpressionString() + " = " + e1.calculate());
mXparser.consolePrintln("Res 2: " + e2.getExpressionString() + " = " + e2.calculate());
[mXparser-v.5.0.0] Res 1: der-(abs(x), x, 0) = -1.0
[mXparser-v.5.0.0] Res 2: der+(abs(x), x, 0) = 1.0

Case 4: Left / right derivative – point given by argument value

import org.mariuszgromada.math.mxparser.*;
...
Argument x = new Argument("x = 0");
Expression e1 = new Expression("der-(abs(x), x)", x);
Expression e2 = new Expression("der+(abs(x), x)", x);
         
mXparser.consolePrintln("Res 1: " + e1.getExpressionString() + " = " + e1.calculate());
mXparser.consolePrintln("Res 2: " + e2.getExpressionString() + " = " + e2.calculate());
[mXparser-v.5.0.0] Res 1: der-(abs(x), x) = -1.0
[mXparser-v.5.0.0] Res 2: der+(abs(x), x) = 1.0

Case 5: Derivative from more complex function – at given point

import org.mariuszgromada.math.mxparser.*;
...
/* Derivative from Taylor series approximation of sin(x)*/
Expression e1 = new Expression("cos(1) - der( sum(k,0,10,(-1)^k*(x^(2*k+1))/(2*k+1)!), x, 1)");
mXparser.consolePrintln("Res 1: " + e1.getExpressionString() + " = " + e1.calculate());

Expression e2 = new Expression("cos(2) - der( sum(k,0,10,(-1)^k*(x^(2*k+1))/(2*k+1)!), x, 2)");
mXparser.consolePrintln("Res 2: " + e2.getExpressionString() + " = " + e2.calculate());

Expression e3 = new Expression("cos(3) - der( sum(k,0,10,(-1)^k*(x^(2*k+1))/(2*k+1)!), x, 3)");
mXparser.consolePrintln("Res 3: " + e3.getExpressionString() + " = " + e3.calculate());
[mXparser-v.5.0.0] Res 1: cos(1) - der( sum(k,0,10,(-1)^k*(x^(2*k+1))/(2*k+1)!), x, 1) = 8.588628E-10
[mXparser-v.5.0.0] Res 2: cos(2) - der( sum(k,0,10,(-1)^k*(x^(2*k+1))/(2*k+1)!), x, 2) = -2.6459193E-9
[mXparser-v.5.0.0] Res 3: cos(3) - der( sum(k,0,10,(-1)^k*(x^(2*k+1))/(2*k+1)!), x, 3) = -1.5994834E-9

Case 6: Derivative from more complex function – point given by argument value

import org.mariuszgromada.math.mxparser.*;
...
Argument x = new Argument("x = 1");

/* Derivative from Taylor series approximation of sin(x)*/
Expression e = new Expression("cos(x) - der( sum(k,0,10,(-1)^k*(x^(2*k+1))/(2*k+1)!), x)", x);
mXparser.consolePrintln("Res 1: " + e.getExpressionString() + " = " + e.calculate());

x.setArgumentValue(2);
mXparser.consolePrintln("Res 2: " + e.getExpressionString() + " = " + e.calculate());

x.setArgumentValue(3);
mXparser.consolePrintln("Res 3: " + e.getExpressionString() + " = " + e.calculate());
[mXparser-v.5.0.0] Res 1: cos(x) - der( sum(k,0,10,(-1)^k*(x^(2*k+1))/(2*k+1)!), x) = 8.588628E-10
[mXparser-v.5.0.0] Res 2: cos(x) - der( sum(k,0,10,(-1)^k*(x^(2*k+1))/(2*k+1)!), x) = -2.6459193E-9
[mXparser-v.5.0.0] Res 3: cos(x) - der( sum(k,0,10,(-1)^k*(x^(2*k+1))/(2*k+1)!), x) = -1.5994834E-9

Case 7: Integrals – calculating pi by integration sqrt(1-x^2)

import org.mariuszgromada.math.mxparser.*;
...
Expression e = new Expression("2 * int( sqrt(1-x^2), x, -1, 1 )");
mXparser.consolePrintln("Res: " + e.getExpressionString() + " = " + e.calculate());
[mXparser-v.5.0.0] Res: 2 * int( sqrt(1-x^2), x, -1, 1 ) = 3.1415920928388927
Nuget – Package Manager

Install-Package MathParser.org-mXparser -Version 5.1.0

Nuget – .NET CLI

dotnet add package MathParser.org-mXparser --version 5.1.0

Nuget – Package Reference

<PackageReference Include="MathParser.org-mXparser" Version="5.1.0"/>

Maven – Dependency

<dependency>
<groupid>
org.mariuszgromada.math</groupid>
<artifactid>
MathParser.org-mXparser</artifactid>
<version>
5.1.0</version>
</dependency>

Maven – Gradle

implementation 'org.mariuszgromada.math:MathParser.org-mXparser:5.1.0'

Maven – Gradle (Kotlin)

implementation("org.mariuszgromada.math:MathParser.org-mXparser:5.1.0")

GitHub

git clone https://github.com/mariuszgromada/MathParser.org-mXparser

OTHER DOWNLOAD OPTIONS

Download latest release – v.5.1.0 Libris: .NET bin onlyDownload latest release – v.5.1.0 Libris: JAVA bin onlyDownload latest release – v.5.1.0 Libris: bin + doc

NEWS FROM MATHPARSER.ORG
SOURCE CODE

Source code .zipSource code .tar.gz
View on GitHubMathSpace.pl

DONATION
Did you find the software useful?
Please consider donation 🙂
DONATE