Derivatives & Integrals

TO SUPPORT MY WORK, ORDER A COMMERCIAL LICENSE
THANK YOU!

Tutorial Math Collection API spec Download

Below is the code for JAVA, the code for C# is almost identical.

Case 1: General derivative – at given point

import org.mariuszgromada.math.mxparser.*;
...
Expression e = new Expression("cos(1) - der(sin(x), x, 1)");
mXparser.consolePrintln("Res: " + e.getExpressionString() + " = " + e.calculate());
[mXparser-v.5.0.0] Res: cos(1) - der(sin(x), x, 1) = 8.588628E-10

Case 2: General derivative – point given by argument value

import org.mariuszgromada.math.mxparser.*;
...
Argument x = new Argument("x = 1");
Expression e = new Expression("cos(x) - der(sin(x), x)", x);
mXparser.consolePrintln("Res: " + e.getExpressionString() + " = " + e.calculate());
[mXparser-v.5.0.0] Res: cos(x) - der(sin(x), x) = 8.588628E-10

Case 3: Left / right derivative – at given point

import org.mariuszgromada.math.mxparser.*;
...
Expression e1 = new Expression("der-(abs(x), x, 0)");
Expression e2 = new Expression("der+(abs(x), x, 0)");

mXparser.consolePrintln("Res 1: " + e1.getExpressionString() + " = " + e1.calculate());
mXparser.consolePrintln("Res 2: " + e2.getExpressionString() + " = " + e2.calculate());
[mXparser-v.5.0.0] Res 1: der-(abs(x), x, 0) = -1.0
[mXparser-v.5.0.0] Res 2: der+(abs(x), x, 0) = 1.0

Case 4: Left / right derivative – point given by argument value

import org.mariuszgromada.math.mxparser.*;
...
Argument x = new Argument("x = 0");
Expression e1 = new Expression("der-(abs(x), x)", x);
Expression e2 = new Expression("der+(abs(x), x)", x);
         
mXparser.consolePrintln("Res 1: " + e1.getExpressionString() + " = " + e1.calculate());
mXparser.consolePrintln("Res 2: " + e2.getExpressionString() + " = " + e2.calculate());
[mXparser-v.5.0.0] Res 1: der-(abs(x), x) = -1.0
[mXparser-v.5.0.0] Res 2: der+(abs(x), x) = 1.0

Case 5: Derivative from more complex function – at given point

import org.mariuszgromada.math.mxparser.*;
...
/* Derivative from Taylor series approximation of sin(x)*/
Expression e1 = new Expression("cos(1) - der( sum(k,0,10,(-1)^k*(x^(2*k+1))/(2*k+1)!), x, 1)");
mXparser.consolePrintln("Res 1: " + e1.getExpressionString() + " = " + e1.calculate());

Expression e2 = new Expression("cos(2) - der( sum(k,0,10,(-1)^k*(x^(2*k+1))/(2*k+1)!), x, 2)");
mXparser.consolePrintln("Res 2: " + e2.getExpressionString() + " = " + e2.calculate());

Expression e3 = new Expression("cos(3) - der( sum(k,0,10,(-1)^k*(x^(2*k+1))/(2*k+1)!), x, 3)");
mXparser.consolePrintln("Res 3: " + e3.getExpressionString() + " = " + e3.calculate());
[mXparser-v.5.0.0] Res 1: cos(1) - der( sum(k,0,10,(-1)^k*(x^(2*k+1))/(2*k+1)!), x, 1) = 8.588628E-10
[mXparser-v.5.0.0] Res 2: cos(2) - der( sum(k,0,10,(-1)^k*(x^(2*k+1))/(2*k+1)!), x, 2) = -2.6459193E-9
[mXparser-v.5.0.0] Res 3: cos(3) - der( sum(k,0,10,(-1)^k*(x^(2*k+1))/(2*k+1)!), x, 3) = -1.5994834E-9

Case 6: Derivative from more complex function – point given by argument value

import org.mariuszgromada.math.mxparser.*;
...
Argument x = new Argument("x = 1");

/* Derivative from Taylor series approximation of sin(x)*/
Expression e = new Expression("cos(x) - der( sum(k,0,10,(-1)^k*(x^(2*k+1))/(2*k+1)!), x)", x);
mXparser.consolePrintln("Res 1: " + e.getExpressionString() + " = " + e.calculate());

x.setArgumentValue(2);
mXparser.consolePrintln("Res 2: " + e.getExpressionString() + " = " + e.calculate());

x.setArgumentValue(3);
mXparser.consolePrintln("Res 3: " + e.getExpressionString() + " = " + e.calculate());
[mXparser-v.5.0.0] Res 1: cos(x) - der( sum(k,0,10,(-1)^k*(x^(2*k+1))/(2*k+1)!), x) = 8.588628E-10
[mXparser-v.5.0.0] Res 2: cos(x) - der( sum(k,0,10,(-1)^k*(x^(2*k+1))/(2*k+1)!), x) = -2.6459193E-9
[mXparser-v.5.0.0] Res 3: cos(x) - der( sum(k,0,10,(-1)^k*(x^(2*k+1))/(2*k+1)!), x) = -1.5994834E-9

Case 7: Integrals – calculating pi by integration sqrt(1-x^2)

import org.mariuszgromada.math.mxparser.*;
...
Expression e = new Expression("2 * int( sqrt(1-x^2), x, -1, 1 )");
mXparser.consolePrintln("Res: " + e.getExpressionString() + " = " + e.calculate());
[mXparser-v.5.0.0] Res: 2 * int( sqrt(1-x^2), x, -1, 1 ) = 3.1415920928388927
Nuget
Install-Package MathParser.org-mXparser -Version 5.0.2
Maven
<dependency>
<groupid>org.mariuszgromada.math</groupid>
<artifactid>MathParser.org-mXparser</artifactid>
<version>5.0.2</version>
</dependency>
Gradle
implementation 'org.mariuszgromada.math:MathParser.org-mXparser:5.0.2'
Gradle (Kotlin)
implementation("org.mariuszgromada.math:MathParser.org-mXparser:5.0.2")
GitHub
git clone https://github.com/mariuszgromada/MathParser.org-mXparser
OTHER DOWNLOAD OPTIONS

Download latest release – v.5.0.2 Leonis: bin + docDownload latest release – v.5.0.2 Leonis: bin only, includes separate binaries for various .NET platforms and Java versions

NEWS FROM MATHPARSER.ORG
SOURCE CODE

Source code .zipSource code .tar.gz
View on GitHubMathSpace.pl

DONATION
Did you find the software useful?
Please consider donation 🙂
DONATE